Hypothesis Testing Recap

- Hypothesis testing helps an organization:
 - 1. Determine whether making a change to a process input (x) significantly changes the output (y) of the process.
 - 2. Statistically determine if there are differences between two or more process outputs.

1

Steps for Conducting a Hypothesis Test

- 1. Define the problem or issue to be studied.
- 2. Define the objective.
- 3. State the null hypothesis, identified as Ho.
 - Note: the null hypothesis is a statement of no difference between the before and after states.
- 4. The goal of the test is to either reject, or fail to reject Ho.

Decisions based on Data

- Every decision that is made has two possible outcomes with respect to the true nature of an event.
- 1. Correctly identifying the event, or
- 2. Incorrectly identifying the event

.

Decisions based on Data

	Condition			
Decision	Null Hypothesis True	Null Hypothesis False		
Accept Null	Correct	Type 2 Error		
Reject Null	Type 1 Error	Correct		

Decisions based on Data

5

Salk Vaccine Experiment

- Jonas Salk, began his research on polio in 1947 at University of Pittsburgh Medical School.
- Polio (or infantile paralysis) is an infectious disease caused by the poliovirus which results in muscle weakness, especially in the legs.

Salk Vaccine Experiment

• Summertime in America in the 1940's and 1950's was a time of concern and worry for many parents as this was the season when children by the thousands became infected with the poliovirus, from which not everyone recovered.

7

Salk Vaccine Experiment

- The 1952 American Epidemic was the worst outbreak in the nations history.
- Of the nearly 58,000 cases reported that year, over 3000 people died and over 20,000 were left with mild to disabling paralysis.

Salk Vaccine Experiment

- An experiment concerning the use of the Salk vaccine in the control of polio was conducted in the United States in 1954.
- Children in grades in 1, 2, and 3 were chosen as the representative population, as it was among children of these ages that the disease was most prevalent.

9

Salk Vaccine Experiment

- Ho: "There is no difference in the percentage of 1st, 2nd, and 3rd grade children in the United States contracting polio within a year after being inoculated with the Salk vaccine."
- Ha:"There is a difference . . .with the Salk vaccine."

Salk Vaccine Experiment

- A completely randomized experiment was conducted involving about 1 million randomly selected children from grades 1 to 3 in areas of the United States where polio had been quite prevalent in the past.
- Of these 1 million, more than 400,000 parents consented to have their children participate in the study.

11

Salk Vaccine Experiment

• A mathematical model could be written as

$$Y_{ij} = \mu + \tau_i + \varepsilon_{ij}$$

• Where $Y_{ij} = 0$ or 1:

0 - if no polio is diagnosed,

1 - if polio is found.

Salk Vaccine Experiment

- $-\mu$ is a constant or general avg. of the 0's and 1's for the whole population.
- $-\tau_j$ is the treatment effect: j = 1 if treated, j = 2 if not treated.
- $-\varepsilon_{ij}$ is a random error associated with a child receiving treatment j.

13

Salk Vaccine Experiment

• To see the hypothesis to be tested, note that

$$p_j = \sum_{i=1}^{n_j} Y_{ij} / n_j$$

is the proportion of children contracting polio who received treatment j.

• n_i is the number who received treatment j.

Salk Vaccine Experiment

• The statistical hypothesis to be tested is

$$H_0$$
: $p'_1 = p'_2$

with the alternate

$$H_a: p'_1 < p'_2$$

• The sign < indicates that we are interested in showing that the true proportion contracting polio will be less for treatment 1 (vaccine) than for treatment 2 (placebo).

15

Salk Vaccine Experiment Results

Treatment	Sample Size	Number	Proportion	
		Contracting	Contracting	
		Polio	Polio	
Salk Vaccine	$n_1 = 200,745$	56	$p_1 = 28 \times 10E-5$	
Placebo	$n_2 = 201,229$	142	$p_2 = 71 \times 10E-5$	
Totals	401,974	198	$p = 49 \times 10E-5$	

Salk Vaccine Test Statistic

• The test statistic for testing the hypothesis stated is

$$z = (p_1 - p_2)/((pq)(1/n_1 + 1/n_2))^0.5$$

• Where p is the proportion contracting polio in the total sample of $n_1 + n_2$ children.

- Note:
$$q = (1-p)$$

1

Salk Vaccine Experiment

- If one now assumes a risk of 0.001 (taking one chance in 1000 of rejecting Ho when it is true) the rejection region for z is given by z < -3.09 (from the normal distribution table).
- Substituting the values from the data slide yields the following:

Salk Vaccine Experiment

$$z = (28 \times 10E-5) - (71 \times 10E-5) /$$

$$((49 \times 10E-5 \times (1-49 \times 10E-5) \times (1/200,745 + 1/201,229))^0.5$$

$$z = -6.14$$

 Which yields a very, very strong indication that there is significant evidence to reject reject Ho, and conclude that the vaccine was indeed effective.

19

Salk Vaccine Experiment Conclusion

- In fact, the probability of getting a z as low as or lower than -6.14 when there is really no difference in the two groups is less than one chance in a billion.
- P(z=-6.14) = 4.13E-10 = 0.413 Ppb.
- These amazing results, or course, have been strongly substantiated by the nearly complete eradication of polio in the United States.

Salk Vaccine Experiment Conclusion

- The Salk polio vaccine was approved for widespread use in 1955, and Dr. Salk became world-famous overnight.
- In the following years the incidence of polio in America fell from 18 cases per 100,000 people to less than 2 per 100,000.

The Space Shuttle Challenger

- On January 28, 1986, the space shuttle Challenger took off on the 25th flight in NASA's space shuttle program.
- Less than two minutes into the flight, the spacecraft exploded, killing all on board.
- A Presidential Commission headed by then Secretary of State William Rogers was appointed to determine the cause of the accident.

23

The Space Shuttle Challenger

- The space shuttle uses two booster rockets to help lift it into orbit.
- Each booster rocket consists of several pieces whose joints are sealed with rubber O-rings, which are designed to prevent the release of hot gases produced during combustion.

The Space Shuttle Challenger

- Each booster contains three primary O-rings (totaling six for the craft).
- In the 23 previous flights for which there were data (the hardware for flight #4 was lost at sea), the O-rings were examined for damage.

25

The Space Shuttle Challenger

- The forecasted temperature on launching day of the Challenger was 31deg F.
- The coldest previous launch temperature was 53 deg F.
 - Note: At 53 deg F. analysis of the O-rings revealed 3 Erosion Incidents and 2 Blow-by Incidents.

The Space Shuttle Challenger

- The sensitivity of the O-rings to temperature was well known.
- A warm O-ring will quickly recover its shape after a compression is removed, but cold one will not.
- The inability of the O-ring to recover its shape will lead to joints not being sealed and can result in a gas leak.
- It is the combustion of this leaking gas that resulted in the fiery explosion of the Challenger

2

The Space Shuttle Challenger

- There was good deal of discussion among the engineers in the hours preceding the launch.
- Should the launch go on as planned or not?
 - It is important to note that there were no statisticians involved in the discussion.
- A simplified version of one of the arguments made is as follows:

The Space Shuttle Challenger

- If we look at the table, there is no apparent relationship between temperature and the probability of damage;
 - Higher damage occurred at both lower and higher temperatures.
- Thus, that it was cold on the day of the flight doesn't imply that the flight should have been scrubbed.

29

O-Ring Damage Table

Ambient Temp (deg F)	No. of O-Rings damaged	Percent defective
53	2	.333
57	1	.167
58	1	.167
63	1	.167
70	1	.167
70	1	.167
75	2	.333

Scatter Plot of Percent Damaged vs. Temperature

The Space Shuttle Challenger

- Unfortunately, this analysis was incorrect.
- 16 flights where there was no O-ring damage, were completely ignored and
- the information from those flights was deemed negligible.

The Space Shuttle Challenger

• Statistically speaking:

NASA engineers accepted the null hypothesis that the rest of the Space Shuttle launches (16 flights) contained no information regarding the effect that temperature had on O-Ring performance.

The Space Shuttle Challenger

- If flights with high temperature never had O-ring damage, for example, that would clearly tell us a lot about the relationship between temperature and O-ring damage!
- In fact, here is a scatter plot of the O-ring damage vs. temperature for all of the 23 flights for which information was available.

The Space Shuttle Challenger

- Except for the one observation in the upper right of the previous slide, there is a clear inverse relationship between the probability of O-ring damage and the ambient temperature.
- Lower temperature is associated with higher probability of damage.
 - The outlier is flight 61-A, Oct. 30, 1985.

37

The Space Shuttle Challenger

- A scatter plot of all data would certainly have raised some alarms about the advisability of launching the shuttle.
- Unfortunately, such a plot was never constructed.
- The basic flaw in the analysis of the thermal distress carried out before the launching was the failure to include flights in which were was no Oring damage.

The Space Shuttle Challenger

- It is the conclusion to be drawn, as Sherlock Holmes said, from the "dog that did not bark."
- The Rogers Commission concluded that "a careful analysis of the flight history of Oring performance would have revealed the correlation of O-ring damage in low temperature."

39

The Space Shuttle Challenger

- Dr. Edward R. Tufte, Yale University, complied a data matrix showing the complete history of temperature and O-ring condition for all previous launches.
- Entries are ordered by the possible cause, temperature, from coolest to warmest launch.

Challenger Data Table

			Erosion	Blow-by	Damage
Flight	Date	Temp (F)	Incidents	Incidents	Index
51-C	24-Jan-1985	53	3	2	11
41-B	3-Feb-1984	57	1	0	4
61-C	12-Jan-1986	58	1	0	4
41-C	6-Apr-1984	63	1	0	2
1	12-Apr-1984	66	0	0	0
6	4-Apr-1983	67	0	0	0
51-A	8-Nov-1984	67	0	0	0
51-D	12-Apr-1985	67	0	0	0
5	11-Nov-1982	68	0	0	0
3	22-Mar-1982	69	0	0	0
2	12-Nov-1981	70	1	0	4
9	28-Nov-1983	70	0	0	0
41-D	30-Aug-1984	70	1	0	4
51-G	17-Jun-1985	70	0	0	0
7	18-Jun-1983	72	0	0	0
8	30-Aug-1983	73	0	0	0
51-B	29-Apr-1985	75	0	0	0
61-A	30-Oct-1985	75	0	2	4
51-I	27-Aug-1985	76	0	0	0
61-B	26-Nov-1985	76	0	0	0
41-G	5-Oct-1984	78	0	0	0
51-J	3-Oct-1985	79	0	0	0
4	27-Jun-1982	80		*	*
51-F	29-Jul-1985	81	0	0	0

Challenger Conclusions

- In order to grasp how (statistically) significant launching the Challenger at 29 deg F, it is necessary to calculate a normal score for the distance between the average launch temperature and the launch temperature on January 28, 1986.
- Calculating a normal statistic for any variable is to divide an observed difference by an estimate of error.

Challenger Conclusions

- The average launch temperature for the previous 24 launches was 70 deg F.
- The corresponding standard deviation was 7.2232.
- The launch temperature on January 28, 1986 was 29 deg F.
- How large is the distance between 29 deg F and 70 deg F, in normalized units?

45

Challenger Conclusions

- Using 70 deg F as the mean (μ) temperature, and 7.2232 as the standard deviation (σ), we can calculate a statistic based upon the Z distribution.
 (29 deg F 70 deg F)/ 7.2232 = -5.676.
- Assuming once again, a risk of 1/1000, the rejection region for z is given by z < -3.09 (from the normal distribution table).

Challenger Conclusions

- As in the Salk Vaccine experiment, the probability of getting a *Z statistic* as low as or lower than –5.676 when there is really no difference in the two groups is approximately 7 chances in a billion.
- P(z=-5.676) = 6.89 E-09 = 6.89 Ppb.

47

Challenger Conclusions

- There were 13 charts prepared for making the decision to launch on January 28, 1986.
- As analytical graphics, the displays failed to reveal a risk that was in fact present.
- There was no cause and effect establishing O-ring performance as a function of temperature.

Challenger Conclusions

- As presentation graphics, the displays failed to persuade government officials that a cold-weather launch might be dangerous.
 - In fact the probability of there being no
 O-ring damage was approximately 7 Ppb.

Challenger Conclusions

- There are right ways and wrong ways to show data; there are displays that reveal the truth and displays that do not.
- If the matter is an important one, then getting the displays of evidence right or wrong can possibly have momentous consequences.

5

Recommendations for Quality Practitioners

- Develop a proficiency in the use of simple and robust techniques for exploratory studies;
- Establish as a primary objective results that are
- 1. interpretable,
- 2. understandable,
- 3. and easily communicated to others.